Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1301051, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38143759

RESUMO

Atherosclerosis is a common cardiovascular disease caused by the abnormal expression of multiple factors and genes influenced by both environmental and genetic factors. The primary manifestation of atherosclerosis is plaque formation, which occurs when inflammatory cells consume excess lipids, affecting their retention and modification within the arterial intima. This triggers endothelial cell (EC) activation, immune cell infiltration, vascular smooth muscle cell (VSMC) proliferation and migration, foam cell formation, lipid streaks, and fibrous plaque development. These processes can lead to vascular wall sclerosis, lumen stenosis, and thrombosis. Immune cells, ECs, and VSMCs in atherosclerotic plaques undergo significant metabolic changes and inflammatory responses. The interaction of cytokines and chemokines secreted by these cells leads to the onset, progression, and regression of atherosclerosis. The regulation of cell- or cytokine-based immune responses is a novel therapeutic approach for atherosclerosis. Statins are currently the primary pharmacological agents utilised for managing unstable plaques owing to their ability to enhance endothelial function, regulate VSMC proliferation and apoptosis by reducing cholesterol levels, and mitigate the expression and activity of inflammatory cytokines. In this review, we provide an overview of the metabolic changes associated with atherosclerosis, describe the effects of inflammatory responses on atherosclerotic plaques, and discuss the mechanisms through which statins contribute to plaque stabilisation. Additionally, we examine the role of statins in combination with other drugs in the management of atherosclerosis.


Assuntos
Aterosclerose , Inibidores de Hidroximetilglutaril-CoA Redutases , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/tratamento farmacológico , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Aterosclerose/metabolismo , Apoptose , Citocinas
2.
J Mater Chem B ; 11(36): 8717-8731, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37646819

RESUMO

Chemodynamic therapy as a novel type of chemotherapy can damage the DNA structures and induce cell apoptosis and immunogenic cell death (ICD) through generating reactive oxygen species (ROS) to aggravate oxidative stress. Nonetheless, as an intrinsic antioxidative response of tumor cells, the expression of glutathione (GSH) can be upregulated to maintain the cellular redox balance and protect the tumor cells from ROS-mediated damage. In this context, it is feasible to simultaneously boost ROS generation and GSH depletion in tumor cells; however, the precise delivery and release of GSH scavengers at specific subcellular sites is of great importance. Herein, we propose a GSH-responsive mesoporous organosilica nanoparticle (MON)-based nanomedicine MON-CA-TPP@HA through sequentially covalently attaching triphenylphosphine (TPP) and electrostatically coating hyaluronic acid (HA) onto the surface of cinnamaldehyde (CA)-loaded MONs, known as MON-CA-TPP@HA, which has been demonstrated to be an extremely effective therapeutic strategy for cancer treatment through inducing ICD and apoptosis of breast cancer cells. Systematic in vitro experimental results clearly revealed that the nanomedicine can actively target the tumor cells with the help of HA, subsequently enter the tumor cells, and precisely bind with the mitochondria through TPP residues. Upon cleavaging the disulfide bond in the MONs triggered by over-expressed GSH within tumors, the CA molecules can be released inducing the excessive ROS in situ surrounding the mitochondria to activate oxidative stress to induce apoptosis and ICD of breast cancer cells. The results of the in vivo experiments confirm that the MON-CA-TPP@HA nanomedicine can effectively promote dendritic cell (DC) maturation and CD 8+ T cell activation and regulate the ratio of M1/M2 macrophages, which improve tumor immunosuppressive microenvironment. It is thus believed that the current nanomedicine has paved a new way for future cancer therapy.


Assuntos
Neoplasias da Mama , Imunoterapia , Humanos , Feminino , Espécies Reativas de Oxigênio , Glutationa , Ácido Hialurônico , Neoplasias da Mama/tratamento farmacológico , Microambiente Tumoral
3.
J Nanobiotechnology ; 21(1): 4, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36597067

RESUMO

BACKGROUND: Although the promising advancements of current therapeutic approaches is available for the squamous cell carcinoma (SCC) patients, the clinical treatment of SCC still faces many difficulties. The surgical irreparable disfigurement and the postoperative wound infection largely hamper the recovery, and the chemo/radiotherapy leads to toxic side effects. RESULTS: Herein, a novel pH/Hyaluronidase (HAase) dual-stimuli triggered smart nanoprobe FeIIITA@HA has been designed through the biomineralization of Fe3+ and polyphenol tannic acid (TA) under the control of hyaluronic acid (HA) matrix. With the HA residues on the outer surface, FeIIITA@HA nanoprobes can specifically target the SCC cells through the over-expressed CD44, and accumulate in the carcinoma region after intravenously administration. The abundant HAase in carcinoma microenvironment will trigger the degradation of HA molecules, thereby exposing the FeIIITA complex. After ingesting by tumor cells via CD44 mediated endocytosis, the acidic lysosomal condition will further trigger the protonation of TA molecules, finally leading to the Fe3+ release of nanoprobe, and inducing a hybrid ferroptosis/apoptosis of tumor cells through peroxidase activity and glutathione depletion. In addition, Owing to the outstanding T1 magnetic resonance imaging (MRI) performance and phototermal conversion efficiency of nanoprobes, the MRI-guided photothermal therapy (PTT) can be also combined to complement the Fe3+-induced cancer therapy. Meanwhile, it was also found that the nanoprobes can promote the recruitment of CD4+ and CD8+ T cells to inhibit the tumor growth through the cytokines secretion. In addition, the FeIIITA@HA nanoprobes can be eliminated from the body and no obvious adverse side effect can be found in histological analysis, which confirmed the biosafety of them. CONCLUSION: The current FeIIITA@HA nanoprobe has huge potential in clinical translation in the field of precise diagnosis and intelligent synergistic therapy of superficial SCC. This strategy will promisingly avoid the surgical defects, and reduce the systemic side effect of traditional chemotherapy, paving a new way for the future SCC treatment.


Assuntos
Carcinoma de Células Escamosas , Nanopartículas , Neoplasias , Humanos , Linfócitos T CD8-Positivos , Neoplasias/tratamento farmacológico , Fototerapia/métodos , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/tratamento farmacológico , Linhagem Celular Tumoral , Nanopartículas/uso terapêutico , Nanopartículas/química , Microambiente Tumoral
4.
ACS Nano ; 17(1): 184-196, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36525358

RESUMO

Various functional nanomaterials have been fabricated as diagnostic and therapeutic nanomedicines; however, the nanoparticles closely interact with proteins when immersed in biological fluids, forming a "protein corona" that critically alters the biological identity of nanomedicine. Here, we developed a robust strategy to construct theranostic nanoprobes based on protein-corona-coated Fe3O4 nanoparticles and biomineralization in the corona. Water-soluble carboxylic Fe3O4 nanoparticles were prepared by treating oleate-capped Fe3O4 nanoparticles with Lemieux-von Rudloff reagent. Bovine serum albumin (BSA) was used as a model protein to form a corona on the surface of Fe3O4 nanoparticles, endowing the Fe3O4 nanoparticles with biocompatibility and nonimmunogenicity. The protein corona also provides a template for biomimetic mineralization of Fe3+ with tannic acid (TA) to construct Fe3O4@BSA-TAFeIII nanoprobes. The TA-Fe(III) biominerals can not only act as photothermal therapy agents but also interact with unsaturated transferrin in plasma to form a "hybrid" corona, enabling the nanoprobes to target tumor cells through the mediation of transferrin receptors, which commonly overexpress on tumor cell membranes. Once taken in by tumor cells, the protonation of phenol hydroxyl groups in acidic lysosomes would lead to the release of Fe3+, inducing tumor cell death through a ferroptosis/apoptosis hybrid pathway. In addition, the released Fe3+ can boost the T1-weighted MR imaging performance, and the Fe3O4 nanoparticles serve as T2-weighted MR imaging contrast agents. It is thus believed that the current nanoprobes can realize the enhanced dual-modality MR imaging and combined therapy of tumors through controlling the protein corona and biomineralization.


Assuntos
Nanopartículas de Magnetita , Nanopartículas , Neoplasias , Coroa de Proteína , Humanos , Nanopartículas de Magnetita/uso terapêutico , Compostos Férricos , Linhagem Celular Tumoral , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Imageamento por Ressonância Magnética/métodos , Nanomedicina Teranóstica/métodos
5.
Artigo em Inglês | MEDLINE | ID: mdl-35666237

RESUMO

Enhanced angiography based on magnetic resonance imaging (MRI) has emerged as a noninvasive, robust, and high-resolution imaging technique for the clinical evaluation of vascular diseases. However, the effects of clinical Gd-chelating contrast agents are unsatisfactory for MRI contrast enhancement owing to their short blood half-life caused by rapid vascular extravasation, especially in microvessels. To address these issues, nanoprobes based on red blood cell membrane-coated ultrasmall NaGdF4 nanoparticles that exhibit much higher longitudinal molar relaxivity (r1) than the clinically used contrast agent gadolinium diethylenetriaminepentaacetic acid have been developed. Furthermore, the appropriate hydrodynamic diameter and stealth nature aid the nanoprobes to reside longer within the blood vessels without extravasation, thereby increasing the contrast between the blood vessels and surrounding tissues. Through probe-enhanced three-dimensional (3D) dynamic contrast-enhanced MR angiography, the main arteries and veins of the mouse were readily discernible, and even tiny vessels with sub-millimeter diameters could be clearly depicted. With this level of outstanding MR angiography performance, the embolization and recanalization processes of the carotid artery can be serially monitored with high imaging resolution using only a single injection. Additionally, the results of clearance studies and the toxicity tests further highlight the safety features of the nanoprobe. To summarize, the nanoprobes used in this study exhibit less extravascular leakage and a longer blood half-life, thus successfully overcoming the defects of the conventional low-molecular-weight Gd-based contrast agents and demonstrating their potential usefulness in enhanced MR angiography.

6.
ACS Nano ; 16(5): 8076-8094, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35442624

RESUMO

Improving the effectiveness of cancer therapy will require tools that enable more specific cancer targeting and improved tumor visualization. Theranostics have the potential for improving cancer care because of their ability to serve as both diagnostics and therapeutics; however, their diagnostic potential is often limited by tissue-associated light absorption and scattering. Herein, we develop CuInSe2@ZnS:Mn quantum dots (QDs) with intrinsic multifunctionality that both enable the accurate localization of small metastases and act as potent tumor ablation agents. By leveraging the growth kinetics of a ZnS shell on a biocompatible CuInSe2 core, Mn doping, and folic acid functionalization, we produce biocompatible QDs with high near-infrared (NIR)-II fluorescence efficiency up to 31.2%, high contrast on magnetic resonance imaging (MRI), and preferential distribution in 4T1 breast cancer tumors. MRI-enabled contrast of these nanoprobes is sufficient to timely identify small metastases in the lungs, which is critically important for preventing cancer spreading and recurrence. Further, exciting tumor-resident QDs with NIR light produces both fluorescence for tumor visualization through radiative recombination pathways as well as heat and radicals through nonradiative recombination pathways that kill cancer cells and initiate an anticancer immune response, which eliminates tumor and prevents tumor regrowth in 80% of mice.


Assuntos
Neoplasias , Pontos Quânticos , Camundongos , Animais , Compostos de Zinco , Neoplasias/patologia , Imageamento por Ressonância Magnética/métodos
7.
Adv Mater ; 34(21): e2202168, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35362203

RESUMO

Nanovaccines have emerged as promising alternatives or complements to conventional cancer treatments. Despite the progresses, specific co-delivery of antigen and adjuvant to their corresponding intracellular destinations for maximizing the activation of antitumor immune responses remains a challenge. Herein, a lipid-coated iron oxide nanoparticle is delivered as nanovaccine (IONP-C/O@LP) that can co-deliver peptide antigen and adjuvant (CpG DNA) into cytosol and lysosomes of dendritic cells (DCs) through both membrane fusion and endosome-mediated endocytosis. Such two-pronged cellular uptake pattern enables IONP-C/O@LP to synergistically activate immature DCs. Iron oxide nanoparticle also exhibits adjuvant effects by generating intracellular reactive oxygen species, which further promotes DC maturation. IONP-C/O@LP accumulated in the DCs of draining lymph nodes effectively increases the antigen-specific T cells in both tumor and spleen, inhibits tumor growth, and improves animal survival. Moreover, it is demonstrated that this nanovaccine is a general platform of delivering clinically relevant peptide antigens derived from human papilloma virus 16 to trigger antigen-specific immune responses in vivo.


Assuntos
Nanopartículas , Neoplasias , Adjuvantes Imunológicos/farmacologia , Animais , Antígenos , Células Dendríticas , Imunoterapia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/terapia , Peptídeos
8.
J Mater Chem B ; 10(4): 646-655, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34994759

RESUMO

Nanomedicine-based tumor-targeted therapy has emerged as a promising strategy to overcome the lack of specificity of conventional chemotherapeutic agents. "Passive" targeting caused by the tumor EPR effect and "active" targeting endowed by the tumor-targeting moieties provide promising biomedical utilities and cancer therapy strategies for nanomedicine. However, as the nanoparticles are exposed to biological fluids, a large number of protein molecules will be adsorbed on their surface, known as protein corona, which may alter the targeting ability of the nanoparticles. The impact of different protein corona on the "passive" and "active" targeting behaviors is still ambiguous. Herein, three kinds of aqueous soluble Fe3O4 nanoparticles with different surface modifications were synthesized and applied to explore the correlation between their protein corona and passive/active tumor-targeting abilities. In the in vitro and in vivo studies, the protein corona exhibited completely different effects on the active and passive cancer-targeting capability of the particles. The particles presented active cancer-targeting ability if there was enough interaction time between the particles and cells. This was mainly due to the dynamic evolution of the protein corona, the proteins of which may be outcompeted by the cancer cell membrane and determine the targeting abilities. Unfortunately, the protein corona also inevitably accelerated RES/MPS uptake after the particles were injected into the body, which almost completely disabled the active targeting abilities of the particles. We believe that this in-depth understanding of protein corona will provide new ideas on the tumor-targeting mechanisms of nanoparticles and present a feasible approach to designing targeted drugs in the future.


Assuntos
Antineoplásicos/farmacologia , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Neoplasias Mamárias Experimentais/tratamento farmacológico , Teste de Materiais , Camundongos , Camundongos Endogâmicos BALB C , Células Tumorais Cultivadas
9.
Front Pharmacol ; 12: 784864, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925041

RESUMO

Polymyxin B (PMB) exert bactericidal effects on the cell wall of Gram-negative bacteria, leading to changes in the permeability of the cytoplasmic membrane and resulting in cell death, which is sensitive to the multi-resistant Gram-negative bacteria. However, the severe toxicity and adverse side effects largely hamper the clinical application of PMB. Although the molecular pathology of PMB neurotoxicity has been adequately studied at the cellular and molecular level. However, the impact of PMB on the physiological states of central nervous system in vivo may be quite different from that in vitro, which need to be further studied. Therefore, in the current study, the biocompatible ultra-uniform Fe3O4 nanoparticles were employed for noninvasively in vivo visualizing the potential impairment of PMB to the central nervous system. Systematic studies clearly reveal that the prepared Fe3O4 nanoparticles can serve as an appropriate magnetic resonance contrast agent with high transverse relaxivity and outstanding biosafety, which thus enables the following in vivo susceptibility-weighted imaging (SWI) studies on the PMB-treated mice models. As a result, it is first found that the blood-brain barrier (BBB) of mice may be impaired by successive PMB administration, displaying by the discrete punctate SWI signals distributed asymmetrically across brain regions in brain parenchyma. This result may pave a noninvasive approach for in-depth studies of PMB medication strategy, monitoring the BBB changes during PMB treatment, and even assessing the risk after PMB successive medication in multidrug-resistant Gram-negative bacterial infected patients from the perspective of medical imaging.

10.
J Biomater Appl ; 33(10): 1382-1393, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30880565

RESUMO

Mesoporous silica nanoparticles have been extensively explored in anticancer nanomedicine due to their excellent biodegradability, which is one important focus in their further clinical translations. However, the traditional design concepts based on the functional modification with active groups cannot significantly improve the controlled drug release efficiency and anticancer effect. Herein, a molecularly organic-inorganic hybrid mesoporous silica nanoparticle (HMSN) nanocarrier coated with hyaluronic acid (HA) and polyethyleneimine (PEI) was constructed for the gene/chemo-synergetic therapy of breast cancer. Notably, HMSN with tumor-sensitive disulfide bond and targeting ligand HA can be decomposed when it encounters high concentration of glutathione (GSH) and hyaluronidase (HAase). The biodegradability of host molecules and the fast disintegration of the framework in tumor microenvironment can also accelerate the stimuli responsive release of cargos inside the pore space. Furthermore, the grafting of polyethyleneimine (PEI) could increase gene loading efficiency. From the above, the smart approach involves a combination of biodegradability and biological effect and results in synergetic antitumor effect of gene and chemical drug on breast cancer. All these findings demonstrated that HMSN/HA/PEI nanocarriers can be suitable for biomedical application, paving the way to fast development of multi-functional nano-biomedicine.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Neoplasias da Mama/terapia , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Nanopartículas/química , Dióxido de Silício/química , Antibióticos Antineoplásicos/farmacologia , Materiais Biocompatíveis/química , Neoplasias da Mama/genética , Dissulfetos/química , Doxorrubicina/farmacologia , Feminino , Técnicas de Transferência de Genes , Terapia Genética , Humanos , Ácido Hialurônico/química , Células MCF-7 , Polietilenoimina/química , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...